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Abstract-Continuum theories of composites are employed to analyze the influence of inclusions and
porosity on the elastic response of both homogeneous and laminated composite media. The general model
analyzed consists of a periodic array of two perfectly bonded laminates: one of which consists of an elastic
homogeneous material while the other is made up of a periodic array of cylindrical elastic inclusions that are
distributed in another elastic matrix material. Several specific models are deduced as special cases. In all
cases, porosity is simulated in the limit as the properties of the inclusions identically vanish. It is
demonstrated that porosity plays a major role in the geometric dispersion of such media; in particular, it
increases the'arrival and rise times (spreading) of a propagating transient pulse. For the special case of elastic
inclusions in a homogeneous matrix media, the present results correlate very well with existing experimental
data and other approximate analyses.

INTRODUCTION

In recent years considerable effort has been expended upon the modeling, testing, and analysis of
structural composites. For most realistic composites, however, the variability in constituent
properties, geometrical arrangements, and mechanical and thermal interactions render exact
analytic investigations impossible. As an alternative, investigators have sought effective analytic
models which, in general, are appropriate for periodically inhomogeneous linear materials. Some
of these models have been complemented with numerical code calculations to account for other
physical effects such as the material's dispersivity, nonlinearity, and fracture. In most cases the
combined efforts of the analytical and numerical investigations have predicted and correlated
well with experimental results. A current survey of stress wave propagation in composite
materials is given in [1].

As pointed out by Peck[l], a particular item, which has not been considered so far but could
be important, is the geometric dispersion caused by porosity. In fact, experiments performed on a
specific composite (three dimensional quartz phenolic) in the low pressure regime indicate that
porosity is capable of exerting considerable influence on geometric dispersion [2]. Generally
speaking, the term porosity indicates the existence of voids distributed in a particular material.
As for structural composites, micrographs indicate the voids are often somewhat periodic and
frequently possess a particular geometry. These trends are perhaps due to the periodicity
inherent in structural composites and to the nature of their manufacturing processes.

While little is known about the influence of porosity on the response of structural composites,
experimental and analytical investigations of such influence on homogeneous porous materials
are fairly well developed, particularly with regard to the use of such materials for shock wave
attenuation. The most widely used model (known as the P - Q' model) has been suggested by
Herrmann [3] for porous ductile materials in the high pressure, nonlinear regime. In the low
pressure, elastic regime, little data are available, and different models lead to different estimates
of the effective sound speed. The P - Q' model, for example, leads to the unrealistic conclusion
that the elastic wave speed could be higher than the speed in the solid material. Actually, the
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wave speed in a porous material is lower than that in the corresponding solid. This observation
has been asserted by Carroll and Holt [4] who modified the P - a model accordingly. Support for
Carroll and Holt's assertion may be found in the articles by Sve [5] and Kirsch [6] with results
deduced directly from the theory of elasticity.

The evidence indicates that more accurate predictions of the response of composites can be
made if the effects of the presence of voids are taken into account. It is anticipated that the size.
geometry and distribution of the voids can all playa significant role in the elastic response of the
material. In this paper we study a simple idealized porous model in order to demonstrate the
qualitative influence of porosity on the propagation of stress waves in homogeneous and
composite elastic materials, particularly with regard to the distrubance acoustic speed, rise time.
and attenuation.

COMPOSITE MODELING

The specific composite which we will analyze is depicted in Fig. I. It consists of a periodic
array of two laminates with perfect bonds at their interfaces. It is assumed that one of the
laminates is composed of a linear elastic homogeneous material while the other is made up of a
periodic array of cylindrical holes that are distributed in another elastic matrix material. The
choice of the cylindrical shape for the voids is made in light of its mathematical tractability and
the ease in which it can be used to investigat the influence of void geometry on the response.
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Fig. I. Composite's geometry.
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In the following we shall consider wave propagating normal to the laminates (i.e. parallel to
the voids). With regard to the mathematical analysis. we follow the following steps: (a) We first
assume that the voids are filled with an elastic homogeneous isotropic media; (b) subsequently,
we replace the composite with a homogeneous, but dispersive, higher order continuum model.
This is done by firstly homogenizing the composite laminate via a static consideration of the
continuum mixture theory of Hegemier, Gurtman and Nayfeh[7] and subsequently combining it
with the adjacent homogeneous laminate as per the asymptotic analysis technique developed by
Hegemier and Nayfeh[8] to treat the laminated plates. The basic physical assumption made in
this homogenizing procedure is that the wave length of the particular disturbance being
propagated is long with respect to the microstructure of the composite; (c) finally. the influence of
the voids will be simulated in the limit as the properties of the material filling them vanish
identically. Support for this simulation may be inferred from works by Mackenzie [9] and
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Hashin[IO]. Mackenzie determined effective elastic moduli for a slightly porous material
containing small spherical holes. Hashin obtained bounds for the moduli of an elastic medium
containing finite concentration of spherical elastic inclusions. To the order of approximation in
porosity, Hashin's results reduce exactly to those of Mackenzie in the limit as the material
properties of the elastic inclusions vanish.

To avoid possible notational complexity, we shall refer to the "composite laminate" as
constituent I, to its fiber and matrix components as material 3 and 4, respectively, and to the
"homogeneous laminate" (material 2) as constituent 2.

ANALYSIS

Homogenization of the composite laminate
For "dilatational"-type waves propagating parallel to the filled voids, the composite laminate

can be modeled as concentric cylinders, rigidly bonded at their interfaces and subject to
vanishing shear stress and radial displacement on their outer boundary. For this modeling the
static effective mass density and modulus for constituent 1 are given in [8] as

(Ia)

(lb)

(Ie)

where p{3 and n{3, {3 = 3,4, denote the actual mass-density and volume fraction of material {3. Here
.\{3' /i{3 and Ef3 (=.\f3 + 2/itJ ) are the Lame elastic constants and stiffness of material {3. For future
reference, we now define the wave speeds in the actual materials 2, 3, 4 as

j = 2, 3,4. (2)

From (la, b) we construct a representative wave speed as

(3)

Special cases of (3) in which one of the constituents material properties identically vanish can
be constructed. These result in known expressions which may lend support to the presently
proposed idea of simulating voids in the limit of vanishing material properties. For example, if we
set p. = /i. =.\. =0, then (3) yields

(4)

where Y3 is the Young's modulus of material 3. The result (4) represents the well-known acoustic
wave speed (designated Clr) of a solid circular rod. As another example whose results will be
used later, if we set P3 /i3 = .\3 = 0, then (3) yields

(5)
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which appears to define the wave speed, ('Ik, for an elastic infinite space containing infinite
cylindrical "holes" distributed in a periodic fashion. Notice now that the surfaces of the holes are
stress free. In the limit as /1 ...... 0, (corresponding to thin walled cylinders), (5) further reduces to

(6)

which is the known extensional wave speed, ("p, of a rectangular plate. The result in (6) is
expected; it can be easily explained if one imagines unwrapping every two adjacent thin walled
cylinders to form a rectangular plate. The outer boundaries of the cylinders coincide and form the
midplane of the plate and their inner boundaries define its two outer (stress free) faces. Notice
also that the vanishing of the shear stress and transverse displacement at the outer surfaces of the
cylinders implies vanishing of these quantities at the midplane of the plate. These symmetry and
boundary conditions are consistent with the plate theory analysis.i"

Homogenization of the total composite
With the representative material properties (la) and (Ib) of the composite laminate being

defined, the present composite reduces to that of a laminated plates model. Consequently, the
technique developed by Hegemier and Nayfeh [8) to treat the laminated plates problem becomes
directly applicable. Using the analysis and results of [8). we replace the total composite by a
homogeneous. but dispersive, higher order continua whose so-called "far field" motion is
described by the global fourth order partial differential equation (see [8J. equation 61 in
dimensional form),

(7)

Here <t> represents either stress or displacement of constituent 1 or 2. c and G define the
composite's zero frequency limit wave speed and the composite's dispersion parameter,
respectively. In terms of the material properties and the geometric arrangements of the
constituents 1 and 2, the values of c and G are given by

(8)

(9)

where

(lOa)

(lOb)

Here P2 is the actual mass density of material 2 (constitutent 2); Et and p, are the corresponding
effective properties of constituent 1 as defined in equations (I) and (2); /1", a = L 2. define the
volume fractions of the constituents a, i.e.

(11)

where h" is the half-thickness of the laminate a.

tTo further strengthen the idea of simulating voids by vanishing material properties, one can easily show. starting from
Rytov's[l1] exact dispersion relations for the laminated wave guides, that the plate's exact dispersion relation [121 can be
obtained if the material properties of one of the wave guides' constituents vanish identically.
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The dependence of c and G on the material properties and the geometric arrangements of the
composites constituents are of great importance particularly with regard to the manner in which
they influence the arrival time and the distortion (spreading) shape of the propagating pulse in the
medium. This influence is best demonstrated by examining the low frequency (parabolic
approximation) dispersion relation of equation (7)

(12)

and the corresponding well-known head-of-the-pulse (see, e.g. [13]) solution for the propagation
of a unit boundary input; namely,

where

(13)

T = (3GX/2C)1/3. (14)

Here Ai is the Airy function, g is a nondimensional time and T is called the characteristic
dispersion time which depends, for a given propagation distance x, on the constituent's material
properties and geometric arrangements through c and G. The behavior of <I>(x, t) as a function of
t is depicted in Fig. 3. The pulse begins with a steady rise, followed by oscillations about the
boundary input. The wave is roughly a step arriving at g= 0, so that the main disturbance is
propagating at the composite's speed c. The disturbance rise time, i.e., the time that the
disturbance takes to rise from 0+ to its first peak, is proportional to T.

Equations (8) and (9), as they stand, define the effective wave speed and dispersion parameter
for a laminated composite which also includes cylindrical elastic inclusions (material 3). In the
following we shall closely investigate some special cases of the above results in order to
demonstrate the applicability of the present analysis to a wide variety of physically and
industrially relevant models.

Hologeneous materials with inclusions
For the special case where material 2 is the same as material 4 these equations will then define

the wave speed and dispersion parameter for a homogeneous elastic medium including a periodic
array of cylindrical elastic inclusions. The results of this special case, especially those pertaining
to the effective static properties, make it possible to check on the accuracy of our analysis by
comparing them with the available experimental data and other analyses reported by Paul [14]. In
his paper Paul developed an expression to give an approximate effective Young's modulus of a
matrix material containing cubical inclusions which, for the sake of comparison, can be written in
the present notation as

Yc Y2 + (Y3 - Y2)g2/3

Y
2

= Y
2
+(Y3 - Y

2
)(1 - g 113)g2/3'

(15)

where g is the volume fraction of the cubical inclusions. Paul also compared his results, as shown
in Fig. 2, with the experimental data reported by Nishimatsu and Gurland[15], and Kieffer and
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Fig. 2, Comparison of theory with experiments.

Schwartzkopf [16] for an alloy system of tungsten carbide and cobalt. In (17) the subscripts 2 and
3 refer to the cobalt (matrix) and tungsten (inclusion), respectively. The necessary properties
used are given by

Unfortunately the available experimental data concern the measurement of the composites
effective Young's moduli, Yn rather than its effective stiffness, Be. Thus in order to directly
compare our results with the experimental results we need to derive a second effective property
for the composite. One such property which, in light of our analytical procedure, can be easily
derived is the shear modulus /-Le. Consistent with our derivation of Be we construct an expression
for Ike as

(16a)

where

(\6b)

Using known relations, we construct an effective Y, for the laminated composite with cylindrical
inclusions from (lOa) and (16a) as

(17)

The expression (17) can be directly compared with Paul's results after setting the properties of
material 4 equal to those of material 2 and subsequently choosing the inclusion's cylindrical shape
which closely approximates a cube. This can be done by setting n3 n1

2 with g = n I f13 "" n ,3

defining the volume fraction of the inclusions.t Using the constituent's properties mentioned
above. numerical evaluation of expression (17) and Paul's formula are found to correlate very
well as shown in Table 1. In this table both results are normalized with respect to Y z•

tNotice that this condition defines a class of infinitely many geometric arrangements of the cylindrical inclusions. This j,

because no restriction has been placed on the actual dimensions of the inclusions. One of these arrangements closely
approximates a cube, however.
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Table I.

Inclusion volume
fraction
g = "t3 0 0·\ 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9

Paul's Formula
(15) 1·\879 J.358 \·5312 \·7\49 \·9\47 2·1363 2·3860 2-672\ 3·0052 3-4

Present Formula
(17) 1·\897 \·3604 \·5339 \·7177 )·9177 2·1392 2·3888 2·6745 3·0068 3-4

Porous composites
If subsequently we substitute from equations (1) and (2) into (8), and let the properties of

material 3 vanish, the wave speed in the porous composite, Cp , takes the form

(18)

where p is the porosity defined as

and

R1 = 1+ [2n3(1- v4)/nil- 2V4)]
1+ [n3(1 + V4)/(1 - V4)] ,

(19a)

(l9b)

a function of the Poisson's ratio V4. In deriving (19b) we have used the relation v = >"/2(>" + IL).
Similarly, the porous composite's characteristic dispersion time, 'Tp , becomes

(20)

where C Ih is given in (5) which, in terms of V4, can also be written as

(21)

(22)

Results for the nonporous composite can be obtained by setting n3 == 0 either in equations (14)
and (20) or in (8) and (9). For the nonporous case, R I and R~ become unity and consequently
equations (14) and (20) reduce to the wave speed, co, and the dispersion parameter, 'To, of the solid
composite, namely

(23)

(24)
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On the other hand, as n3~ L the porosity p approaches the value fl" R, ~ 00, R2~

(1 - 21'4)1(1 - 1'4)2, and consequently Cp ~ 0 and TI' ~ Cfj. These latter limiting results correspond to
a model of porous material consisting of a series of identical plates of solid material separated by
gaps. For this plate-gap model, it is obvious that a wave propagating normal to the plates cannot
be transmitted.

In order to demonstrate the influence of porosity on the propagation speed, arrival time and
characteristic dispersion time of the composite, we utilize the following material properties and
volume fractions:

P2 = 5·0 g/cm3
, p. = 1·0 g/cm 3

,

E2 = I X 1013 dynes/cm2
, £4 = I X 10" dynes/cm2

,

fl, = 0·4. 1'4 = 0·3.

With these properties the values of nonprous wave speed, co, is calculated as co =

2·6915 X 105 cm/sec. With this value of co, and for the sake of simplicity in the numerical
comparison, we choose x = 0·26915 em which yields the arrival time x Ico as 1·0 x 10-6 sec. We
also choose II =0·13874 em such that the characteristic dispersion time of the nonporous
composite, To, as calculated from (2lb) is normalized to 0·1 sec. With these referral values of Co

and To, and fixing n, = 0,4, 1'. = 0·3, Fig. 3 demonstrates the influence of porosity on the arrival
time and spreading of the propagating step pulse for the given monitoring station x = 0·26915 em.
This figure demonstrates the important phenomenon that porosity tends to increase both the
arrival time and spreading of the pulse.

For the unit step pulse, we see from Fig. 3 that dispersion induces an overshoot in the
composite's response regardless of the porosity. For finite-width pulses, however, dispersion will
often cause the initial disturbance to attenuate: the amount of attenuation will depend very much
on the percent porosity and to a greater extent on the void shape. With reference to Fig. 3, it is a
straightforward matter to demonstrate this conclusion simply by constructing the response of the
porous composite to a rectangular pulse of duration To. This can be done by taking the difference
of two separate step loads applied at times To apart.

15,---------------------,
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Fig. 3. Far-field wave profiles as functions of actual time for different porosities.

Homogeneous porous materials
For homogeneous porous materials, we set in (18-22) the properties of material 2 equal to

those of material 4. For this special case Cp further reduces to
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(25)

which in turn modifies the characteristic dispersion time in (20). The nonvanishing of this
resulting dispersion time indicates that homogeneous porous materials are also dispersive. This
dispersion is perhaps due to the fact that the voids are assumed to be distributed in a periodic
manner. Actual homogeneous porous materials are, however, less dispersive due to the inherent
random distribution of the voids. For the special case of cubical holes, i.e., P = n\n3, and n3 = n.\
the variation of the wave speed with porosity as given in (25) can be compared with the
corresponding result that can be extracted from the formula (38) reported in [5]. The difference
between the two models, of course, is that the cylindrical periodic voids treated here are
redistributed as spherical voids in [5] while maintaining all other parameters the same. In our
present notation, formula (38) in [5] takes the simple form

with

and

1-2v4 lOpl(1-2v)
go = 1- 2V4 + [(1 + v4)pt!2] 7 - 5V4 +2(4 +5V4)PI'

(26a)

(26b)

(26c)

where p is the porosity in the total medium.
Using the properties of the solid material (presently referred to as material 4), P4 = 1·0 g/cm3

,

E 4 = 1010 dynes/cm2
• The variation of the wave speeds (25) and (26) as functions of porosity for

different values of V4 are depicted and compared in Fig. 4. These results are found to bracket the
corresponding variation of the speed for the case where the voids are distributed randomly
everywhere in the material, namely for nI = 1 in equation (26).

.2
- -- Eq.126) ,n,= I
- Eq. (25)
--- Eq. (26)

.2 .3 4

Porosity, P

Fig. 4. Variations of wave speeds as functions of porosity for different Poisson's ratios.
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Finally, in Fig. 5 we demonstrate the influence of the variation of the porous layer volume
fraction, nJ, on the propagation speed for a given percent porosity. For the given fixed porosity
p =0,\, the solid lines illustrate the variation of the normalized speeds. C''f' I('4. as functions of Ill.

The two solid lines are drawn for the two Poisson's ratios 0 and 0·45 as also labeled on the figure.
For the sake of comparison similar results are illustrated for the fixed percent porosity p = O' 3.
As can be seen from this figure. the distribution of voids has profound influence on the material
response especially in cases when Il 1 is small (i.e .. 1l3 ..... I) which indicates that speed will drop
very rapidly when the wave encounters a large void: it reduces to zero in the limit of the
"plate-gap" model mentioned earlier. Also shown in this figure (broken-dotted lines) are the
corresponding results obtained from equation (26).

ol...- -----l_· -L._J......~_........L.....J

.I 2.3 4.5 6 789 10
n,

Fig. 5. Variations of wave speeds as functions of void's shapes for given porosities and Poisson's ratios.

Acknowledgements-This research was supported in part by the Air Force Weapons Laboratory under Contract No. F29601·
73-C-0074. The author also acknowledges the helpful discussions with Dr. G. A. Gurtman.

REFERENCES

1. Dynamics of Composite Materials (Edited by E. H. Lee). ASME. New York (1972).
2. S. Okubo, C. Sve and 1. S. Whittier, Dispersion of an Elastic Step Pulse in 3DQP-Effect of Porosity, Aerospace

Corporation Report No. TOR-0712 (2816-75)-1. (June, 1972).
3. W. Herrmann, Constitutive equation for the dynamic compaction of ductile porous material. 1. Appl. Phys. 40, 2490

(1969).
4. M. M. Carroll and A. C. Holt. Static and dynamic pore-collapse relations for ductile porous materials. 1. Appl. Phys.43.

1626 (1972).
•C;. C. Sve. Elastic wave propagation in a porous laminated composite, Int. 1. Solids Structures, 9, 937 (1973).
6. T. D. Riney, et al., Ground Motion Models and Computer Techniques, Systems. Science and Solftware Technical Report.

3SR-1071 (April. 1972).
7. G. A. Hegemier, G. A. Gurtman and A. H. Nayfeh, A continuum mixture theory of wave propagation in laminated and

fiber-reinforced composites, Int. J. Solids Structures, 9. 395 (1973).
8. G. A. Hegemier and, .. H, Nayfeh. A continuum theory for wave propagation in laminated composites-<:ase I:

propagation normal to the laminates, 1. Appl, Mech., 40, (2); Trans. ASME, 95. (Series E). 503 (June I(73).
9, 1. K. Mackenzie, the elastic constants of a solid containing spherical holes, ProC'. Phys. SoC'. B63, pp. 2-11 (1950).

10, Z, Hashin. The ela,tic moduli of heterogeneous materials, 1. Appl, Mech, 29, 143 (1962),
11. S, M, Rytov, ACOU" "I properties of a thinly laminated medium, Soviet Phys. Acoustics, 2. 65 (1956).
12. Lord Rayleigh, On the free vibrations of an infinite plate of homogeneous isotropic elastic material, Pro('. London

Mathematical Society, 20. 225 (1889),
13. J. C. Peck and G. A. Gurtman, Dispersive pulse propagation parallel to the interfaces of a laminated composite, J. Apr/.

Mech. 36, (3): Trans. ASME, 91, (Series El, 479 (Sept. 19(9).
14. B. Paul, Prediction of elastic constants of multiphase materials. Trans. Met, Soc. MME. 218, 36 (1960).
15. C. Nishimatsu and J. Gurland, Experimental survey of the deformation of hard-ductile two-phase alloy system, we-co,

Technical Report No, 2, Division of Engineering. Brown University, September 1958,
16. R. Kieffer and P. Schwartzkopf, Hartstoffe lind Hartmetal/e. Springer, Vienna (1953),


